
OntoView: Comparing and Versioning Ontologies

Michel Klein and Dieter Fensel
Vrije Universiteit Amsterdam

mcaklein|dieter@cs.vu.nl

Atanas Kiryakov and Damyan Ognyanoff
OntoText Sofia

naso|damyan@sirma.bg

1 Ontology versioning system
In the vision of a Semantic Web, ontologies have a role in
defining and relating concepts that are used to describe data
on the web. The distributed and dynamic character of the web
will cause that many versions and variants of ontologies will
arise. Ontologies are often developed by several persons and
continue to evolve over time. This will likely cause incompat-
ibilities in the applications and ontologies that refer to them,
and will give wrong interpretations to data or make data inac-
cessible.

To handle ontology changes, it is necessary to maintain
the links between the versions and variants, which specify
how they are related. These links can be used to re-interpret
data and knowledge under different versions. We present a
web-based system that supports the user infinding, specify-
ing andstoring the relations between ontology versions. The
system, called OntoView, provides a transparent interface to
different versions of ontologies, by maintaining several as-
pects of a version relation: the descriptivemeta-data (i.e.,
the who, when and why of a change), theconceptual rela-
tions between constructs in different versions of ontologies,
and thetransformations between the ontology specifications
(i.e., a list of update operations). Currently, the system sup-
ports RDF-based ontology languages (RDFS, DAML+OIL).

The goal of this system is not to provide a central registry
for ontologies, but to allow ontology engineers to store their
versions and variants of ontologies and relate them to other
(possibly remote) ontologies. The resulting mapping rela-
tions between versions can also be exported and used outside
the system.

2 Comparing ontologies
One of the central features of OntoView is the ability to com-
pare versions of ontologies. The comparison function is in-
spired by UNIXdiff . However, it compares atstructural
level instead of line-level, showing which definitions of onto-
logical concepts or properties have changed.

The comparison function distinguishes between the several
types of change. Each change type is highlighted in a differ-
ent color, and the actually changed lines are printed in bold-
face.
• Non-logical changes, e.g. in a natural language descrip-

tion. In DAML+OIL, this are changes in the rdfs:label
of a concept or property, or in a comment inside a defi-
nition.

• Logical definition changes. This is a change in the defi-
nition of a concept that affects its formal semantics. Ex-
amples of such changes are alterations of subClassOf,
domain, or range statements.

• Identifier changes, addition of definitions, or deletion of
definitions.

There is also some basic support for the analysis of the effects
of changes. On request, OntoView highlights the places in the
ontology where conceptually changed concepts or properties
are used. In the future, this function should also exploit the
transitivity of properties to show the propagation of possible
changes through the ontology. Further, we expect to extend
the system with a reasoner to automatically verify the changes
and the specified conceptual relations between versions.

2.1 Specifying the conceptual implication
The comparison function is an aid for the ontology engineer
to find changes in an ontology. To allow for interoperabil-
ity, the conceptual implicationof the changes in ontological
definitions should be specified. OntoView allows the user to
characterize the changes by labelling a changed definition ei-
ther as “identical” (when the specification has changed but
the ontological concept is still meant to be the same), or as
“conceptual change” (when the change resulted in a different
ontological concept). In the latter case, the logical relation be-
tween the two versions can be specified more precisely, e.g.
by stating that one version of a concept is a subclass of the
other. This information about the conceptual implications of
changes complements the descriptive meta-data and the list
of change operations.

2.2 Change detection in RDF-based ontologies
To detect changes, we uses the fact that the RDF data model
underlies most popular web ontology languages, including
RDF Schema and DAML+OIL. The RDF data model basi-
cally consists of triples of the form<subject, predi-
cate, object> , which can be linked by using the object
of one triple as the subject of another. The change detection
algorithm splits the ontology in separate definitions, which
are then parsed into RDF triples. This results in a set of small
RDF graphs, each representing a specific definition of a con-
cept or a property. Next, we locate for each graph in the new
version the corresponding graph in the previous version of the
ontology. These sets of graphs are then checked according to
a number of rules that specify the “required” changes in the
triples set (i.e., the graph) for a specific type of change.

3 Conclusion and outlook
OntoView is a system that helps ontology engineers to spec-
ify relations between ontology versions in such a way that
interoperability is improved. It retains the full transformation
of the specification as well as the conceptual relation between
versions of concepts and properties. Such support is essential
when ontologies are used on the Web and also useful for col-
laborative development of ontologies. In the future, we would
like to add support for other ontology languages and include
heuristics tosuggestthe conceptual implications of changes.
OntoView will be available athttp://ontoview.org/ .

http://ontoview.org/

	1 Ontology versioning system
	2 Comparing ontologies
	2.1 Specifying the conceptual implication
	2.2 Change detection in RDF-based ontologies

	3 Conclusion and outlook

